
Improving Communication Through Overlay
Detours: Pipe Dream or Actionable Insight?

Stephen Brennan
EECS Department

Case Western Reserve University
Cleveland, USA

stephen.brennan@case.edu

Michael Rabinovich
EECS Department

Case Western Reserve University
Cleveland, USA

michael.rabinovich@case.edu

Abstract—It has been long observed that communication
between a client and a content server using overlay detours
may result in substantially better performance than a native
path offered by IP routing. Yet the use of detours has been
limited to distributed platforms such as Akamai. This paper
poses a question – how can clients practically take advantage of
overlay detours without modification to content servers (which
are obviously outside clients control)? We have posited elsewhere
that the emergence of gigabit-to-the-home access networks would
precipitate a new home network appliance, which would maintain
permanent presence on the Internet for the users and have
general computing and storage capabilities. Given such an appli-
ance, our vision is that Internet users may form cooperatives in
which members agree to serve as waypoints points to each other
to improve each other’s Internet experience. To make detours
transparent to the server, we leverage MPTCP, which normally
allows a device to communicate with the server on several
network interfaces in parallel but we use it to communicate
through external waypoint hosts. The waypoints then mimic
MPTCPs subflows to the server, making the server oblivious to
the overlay detours as long as it supports MPTCP.

Index Terms—Download performance, overlay detours,
MPTCP

I. INTRODUCTION

Numerous studies have observed that communication be-
tween two Internet hosts can often be improved if the hosts
sent traffic via relay hosts, rather than directly on a native
path offered by IP routing [1]. The overlay detour paths
produced by the relay hosts traversal often have less packet
loss [2], lower latency [3], and higher bandwidth [4], due
to inefficiencies in native IP routes. Moreover, past studies
have shown that most performance benefits can be obtained
by using a single waypoint between the end-hosts [2], [5].
However, despite these insights being known for almost two
decades, the use of detours has been limited to communication
within distributed platforms, notably, Akamai, which adopted
detours as the foundation of their “SureRoute” technology [6].
At the same time, with emerging gigabit-to-the-home access
networks, the communication bottleneck will shift upstream
from the last mile, and likely into the core Internet. Utilizing
well-connected waypoints promises significant performance
benefits to Internet users in this environment, especially if

This work was supported in part by NSF through grant CNS-1647145.

users can utilize multiple detour paths in parallel to speed
up their content accesses.

This paper poses a question – how can clients practically
take advantage of overlay detours, when downloading content
from the Internet, without modification to content servers
(which are obviously outside clients control)? We propose
a framework to leverage overlay detours in an application-
transparent manner and demonstrate its operation using an
unmodified off-the-shelf networked application (iPerf). Our
vision rests on the assumption we posited elsewhere [7]
that to realize full potential of the emerging ultra-broadband
Internet, home networks would benefit from a new appliance,
potentially packaged within the wifi router form factor, which
would have general computing and storage capabilities. Given
such an appliance, we envision users forming cooperatives in
which members agree to serve as waypoints to each other
to improve each others Internet experience – in other words,
creating peer-to-peer systems where home appliances of some
users serve as detour waypoints for end devices of other users.
To make detours transparent to content servers, we leverage
MPTCP, which normally allows a device to communicate with
a server on several network interfaces in parallel, but we
use it to communicate through external waypoint hosts. The
waypoints then mimic MPTCPs subflows to the server, making
the server oblivious to the overlay detours as long as it supports
MPTCP.

We recognize that very few content servers currently support
MPTCP. However, there are signs that this might be changing.
For instance, Apple has employed MPTCP for its Siri service
[8]. We assume that as compelling use cases such as the one
addressed in the present paper emerge, the deployment by
content servers will grow. In the meantime, IETF is working
on a proposal to deploy MPTCP proxies within the network,
which would allow MPTCP-adopting clients to benefit from
MPTCP even with interacting with a non-MPTCP server, by
proxying their communication through an MPTCP proxy in
server’s vicinity [9], [10]. Our approach can be used in this
deployment scenario as well, by establishing subflows with
the MPTCP proxy.

MPTCP has been used for bandwidth aggregation over
available access links (most commonly, wifi and cellular) in
a mobile device, for communication within a datacenter [11]

and for Internet gateway aggregation [12] in a rural setting.
Our approach represents a novel use of MPTCP, namely, to
make overlay detours possible, so that a client can explore
alternative wide-area routes and aggregate multiple such routes
if possible.

II. VISION

We assume that ultra-broadband Internet home networks
would deploy a server-like appliance that would maintain
permanent Internet presence for the users at the residence and
help realize full potential of ultra-broadband – the appliance
we called “home point of presence” [7], or HPoP. With this
assumption, we envision that users form a detour cooperative
to improve each other’s Internet performance. By joining
the collective, they offer their HPoPs as waypoints which
other members may use. In return, they gain access to the
detouring services of the other members of the collective. In
effect, the collective forms an overlay peer-to-peer network
that unmodified TCP applications may use.

To join the cooperative, a member installs certain
application-level components, as well as our patched kernel
with modified network stack, on their client machine. In
principle, a client can engage another member as a waypoint
in its communication path with the server using an arbitrary
custom protocol, since all coop members install our custom
patch (we later discuss some particularly simple mechanisms
for this engagement). The waypoint, however, mimics the
behavior of an MPTCP subflow when communicating with
the server.

When the data mostly flows from the server to the client,
the client establishes subflows to the server through waypoints,
but it is still up to the server to split the flow among the
waypoint(s) and the original direct path to the client. The client
can still have indirect control over waypoint use by withdraw-
ing poorly performing waypoints and adding new waypoints
during the TCP session, as well as by other manipulations
(see Section VI). When the data flows mostly from the client
to the server (e.g, in video clip uploads, video-conferencing, or
other increasingly common cases of user-generated content),
the client can directly explore different waypoints by sending
a few data packets over new subflows and staying with whose
waypoints that perform well.

In both cases, our mechanism is able to explore different
waypoints to find efficient overlay detours, and further to
aggregate bandwidth of several available paths. Most im-
portantly, since MPTCP presents the same binary-compatible
OS level API as TCP, unmodified applications may use this
mechanism simply by using our patched kernel.

A. Security and Privacy

Inserting a waypoint into a communication path introduces
potential security and privacy concerns. However, modern
Internet applications increasingly use TLS. The client should
perform TLS handshake on the initial subflow, over the direct
path, before establishing any other subflows. Subflows through
detours will then be encrypted, so the waypoints will be

unable to read any communication. A waypoint still learns the
IP addresses with which the client is communicating. While
this information already flows openly through the Internet in
the unencrypted IP headers, our approach makes it readily
available to the waypoints involved. This is an inherent cost
of our approach.

A malicious waypoint could also disrupt its subflow in ar-
bitrary ways, but as long as TLS is negotiated before any aux-
iliary subflows are established, the application would notice,
and presumably withdraw this waypoint, while transparently
recovering (within TCP) the affected packets over remaining
subflows. Furthermore, the misbehaving peer can be expelled
from the collective to avoid affecting future communication of
any member.

III. RELATED WORK

Historically, the communication bottleneck has been most
commonly located at the last mile, and extensive effort has
been spent on alleviating this bottleneck, going back to chan-
nel bonding technology for ATM networks [13]. However,
with the emergence of gigabit access networks, the bottleneck
shifts upstream, and it has been shown the effective download
TCP throughput that gigabit users obtain is orders of magni-
tude lower than their access link capacity [14]. We are trying
to address this new reality.

Our approach essentially builds one-hop overlay paths be-
tween clients and servers at the transport layer. Numerous
previously proposed overlay or peer-to-peer networks typically
operate at the application layer and are not transparent to the
application at both sides of the connection. Even when their
functionality is encapsulated within a runtime library, such
as in RON [15], applications still have to link to the custom
library and thus undergo a change. The same holds for mTCP
[16], a pre-MPTCP multipath variant of TCP built in user
space on top of RON. Gummadi et al. describe a system
for single-hop source routing (SOSR) [2] that is transparent
to websites. Unlike our approach, it is unable to aggregate
bandwidth across multiple paths or switch paths in the middle
of a TCP session.

Some applications provide means for parallelizing commu-
nication at the application level. For example, a client could
use members of the collective we envision as proxies for
parallel download of a static HTTP object using HTTP range
requests. By enabling detours at the transport layer, we allow
our framework to be used by any application. Even in HTTP,
accesses to dynamic resources are often non-idempotent, mak-
ing these resource not amenable to parallelization via range
requests.

IP source routing [17] allows path exploration at the IP
layer. However, due to security concerns, it is recommended
that routers and firewalls drop packets with source-routing
options [18], and many routers on the Internet do.

IV. ARCHITECTURAL FRAMEWORK

DCol involves three types of hosts:

Kernel Space
Path Manager

User Space
Client Daemon

Detour Daemon

Server

B C

D E

F
A

Fig. 1. High-level architecture of DCol. In step A, the initial subflow across
the default route is created. In step B, the path manager requests an overlay
route. In step C, the client daemon reports overlay routes back to the path
managers. In steps D and E, the client and detour daemons negotiate an
overlay route. In step F, a subflow is created through the detour.

• The client is the active opener of the MPTCP connection.
In our system, the client actively requests all detours and
initiates all subflows.

• The server is the passive opener of the MPTCP connec-
tion.

• The waypoint is a host which acts as an intermediary
along the overlay detour from the client to the server.
There may be more than one detour at a time, and there
are multiple ways to implement the detour service. How-
ever, each detour only passes through a single waypoint.

We assume that the server supports Multipath TCP but
employs no additional customization. The clients and way-
points are customized to use our system. While we describe
clients and waypoints as separate entities, DCol members
would typically combine both roles. This paper focuses on
basic architectural framework for exploiting overlay detours.
The take-away point from the discussion in this section is
that key building blocks for DCol already exist and setting
up such a collective involves mostly integration of existing
technologies. Given the groundwork described in this paper,
the main direction for future work is developing and imple-
menting strategies for exploring candidate waypoints and for
controlling how traffic is split among them.

Figure 1 depicts a high level view of DCol architecture.
The DCol components on a client includes a modified MPTCP
path manager in the kernel and a user-space client daemon.
A waypoint deploys a user-space detour daemon. Engaging
a waypoint for the communication between the client and
server involves the following steps. When an application opens
a TCP connection to an MPTCP-enabled server, the client
creates an MPTCP connection to the server. The first subflow
uses the Internet routed path. Once this connection is fully
established, the path manager communicates with the client
daemon to request overlay routes for additional subflows.
The client daemon receives this request, and selects candidate

waypoints for detours1. The client and detour daemons on se-
lected waypoints negotiate their respective tunnels2. The client
reports the successfully negotiated tunnels to the kernel, which
creates subflows on these tunnels to explore the corresponding
detours according to some policy3. We discuss each of these
components in more detail below.

We have implemented a proof-of-concept prototype of our
approach. The prototype is built on top of Linux MPTCP
implementation [19] version 0.91 and includes an extension
to the MPTCP path manager on the client side and user-space
daemons on both the client and waypoint sides.

A. Client-to-Waypoint Tunneling

We have implemented two different mechanisms for tunnel-
ing MPTCP subflows between the client and waypoint, lever-
aging VPN tunneling and using network address translation
at the waypoint. Furthermore, our DCol client incorporates
both alternatives, so it can use either technology for individual
detours depending on which tunneling type is supported by the
corresponding waypoints.

1) VPN Tunneling: VPN technologies use packet encap-
sulation to tunnel VPN clients’ traffic through a VPN server.
We can leverage this functionality to tunnel traffic between our
clients and waypoints. We use OpenVPN [20], an open-source
VPN implementation that offers encapsulation of packets into
UDP datagrams addressed between the VPN client and server
among tunneling options, as the basis of our exploration of
this mechanism.

Our setup is shown in Figure 2. A waypoint runs an
OpenVPN server, which offers a DHCP service for its virtual
subnet (its VPN). To use a waypoint for any detours, the client
daemon creates a virtual interface and join the corresponding
VPN by running DHCP to acquire an IP address on the virtual
subnet. The client daemon further sets up a routing rule for
this interface with high cost to all destinations. This prevents
the route from being used for unrelated traffic but keeps it
available for the path manager to route specific subflows as
needed. The client daemon informs the path manager of the
available VPN tunnels, which the path manager can use to
create MPTCP subflows.

Once a waypoint receives and decapsulates a packet from
a client, the waypoint must rewrite the packet’s source IP ad-
dress to contain the waypoint’s own address before forwarding
the packets to the Internet. This ensures that the source address
is routable and that the return traffic will be routed back to
the waypoint. While this functionality is typical for VPNs
that provide Internet access, it is not offered by OpenVPN
itself. Consequently, we configure waypoints (via netfilter)

1The waypoints are currently selected from a static configuration file but in
reality would be selected according to some policy from the current members
of the collective

2Waypoints behind NAT boxes make themselves available for incoming
tunnel requests using standard UPnP or STUN mechanisms.

3The prototype currently uses a simple policy that creates a subflow
across every available waypoint, until a predefined limit is reached.Our
implementation uses two subflows as the default limit, but it may be changed
by an administrator using the sysctl tool.

Kernel

Real interface
59.1.2.3

User Space

Kernel

Virt. Interface
10.0.1.0

Real interface
170.1.2.30

User Space

129.22.1.2 170.1.2.3 < OpenVPN’s headers > 10.0.1.1 <end-server IP> <payload>

Outer IP/UDP/OpenVPN header Encapsulated Datagram

Kernel

Virt. Interface
10.0.1.1

Real interface
129.22.1.2

User Space

Kernel

Real interface
135.1.1.1

User Space

Virt. Int.
10.0.1.2

Virt. Int.
10.0.2.1

Client 1

Client 2

Waypoint 1

Waypoint 2

OpenVPN

Op.VPN

OpenVPN

Op.VPN

Virt. Interface
10.0.2.0

OpenVPN

170.1.2.30 <end-server IP> <payload>

Fig. 2. VPN-based client-to-waypoint tunneling. Client 1 is connected to waypoint 1 and client 2 to both waypoint 1 and 2. In the tunneled traffic from a
client to the waypoint, the inner datagram headers carry the client’s private IP address as source, and the end-server’s IP address as destination IP addresses.
The outer datagram header carry the IP addresses of the tunnel end-points.

to perform network address translation (NAT) on outgoing
packets. Similarly, the incoming packets get their destination
addresses rewritten from the waypoint’s real address to the
client’s private address.

To connect to multiple waypoints simultaneously, the client
would create multiple virtual interfaces and join multiple
VPNs. Thus, care must be taken to avoid addressing conflicts
between the VPNs. The easiest way to achieve this is to make
each waypoint use a distinct address block for its private IP
subnet. For instance, using the 10.0.0.0/8 unroutable address
block, if each waypoint were to establish its own /26 subnet
(sufficient to detour traffic of 64 clients simultaneously), there
would be capacity for 256K non-conflicting subnets hence
members of the collective. In a large collective, these subnet
allocations could be handled by a centralized collective man-
agement server, or an appropriate distributed protocol among
the members. In our prototype, we assign subnets to waypoints
manually.

Finally, note that OpenVPN requires the client and server to
exchange certificates during the initial connection negotiation.
This mutual authentication is actually beneficial for DCol
because it can be used to (a) protect both the client and
waypoint from working with an imposter counterpart and (b)
provide accountability for misbehaving clients and waypoints.
However, DCol’s OpenVPN configuration does not encrypt
or sign subsequent messages, since these protections are
orthogonal to DCol’s functionality. Presumably the payload is
already protected through end-to-end TLS negotiated between
the client and server as discussed earlier.

2) NAT Tunneling: The second approach directly modifies
packet source and destination addresses. Rather than encap-
sulating packets and sending them to the waypoint, the client
daemon instead informs the waypoint’s detour daemon of the
intended destination, and requests that it perform NAT on its

packets. The waypoint sets up a NAT rule and allocates a port
on which it would receive packets from the client intended to
the specified destination. Then, the client’s kernel addresses
packets directly to the waypoint, on the agreed upon port. The
waypoint forwards these to the final destination, and forwards
reply packets to the client. On packets destined to the server,
the waypoint rewrites the destination address and port number
to be the server’s, and rewrites the source address and port
number to be its own. For reply packets, the waypoint rewrites
the destination address and port number to be the client’s, and
rewrites the source address and port number to be its own.
We utilize standard NAT facilities offered by Linux within its
netfilter framework to set up the NAT rules, with no custom
code needed for packet forwarding.

We reiterate that the NAT solution requires the client
daemon to use a signaling protocol to communicate to the
waypoint the ultimate destination’s address and port number
and get from the waypoint the port number allocated for
the tunnel and a conformation from the waypoint that the
corresponding NAT rules have been installed. Only after this
signaling completes can the client daemon make this waypoint
available to the client path manager.

The detour daemon is implemented in our prototype as a
Python script.

3) Discussion: There are interesting tradeoffs between
VPN and NAT tunneling. On one hand, an established VPN
connection may be used as a detour for any TCP connection
to any end-server, without any additional setup. The NAT
mechanism requires signaling with the waypoint for every
new server address and port number combination. On the
other hand, VPN adds 36 bytes of per-packet overhead for
IP encapsulation and UDP and OpenVPN headers4. The NAT

4To avoid fragmentation, OpenVPN accommodates this overhead by auto-
matically reducing the maximum segment size accordingly.

mechanism adds no extra bytes to a packet. Further, VPN
tunneling provides a built-in mechanism for mutually authenti-
cating the client and waypoint. The NAT implementation offers
no such protection. In fact a naı̈ve signaling protocol consisting
of a simple exchange of UDP request/response messages that
we use in our DCol prototype would expose a number of
obvious security vulnerabilities. Our simple protocol suffices
to assess the efficacy of the NAT-based approach, but a more
secure signalling mechanism would be needed in a realistic
implementation. We discuss this issue further in Section VI.

B. DCol Client

A DCol client consists of a modified MPTCP path manager
(a kernel module) and a client daemon (a user-space com-
ponent). The two components communicate over a generic
netlink, a commonly used Linux facility for communication
between the kernel and user space [21]. Our implementation
allows a given DCol collective to mix and match VPN and
NAT tunnels, depending on waypoint preferences.

The DCol path manager performs the following basic func-
tions:

• It maintains two lists of available waypoints, one
for waypoints reachable through NAT tunnels and the
other through VPN tunnels. As explained earlier (Sec-
tion IV-A), NAT tunnels are specific for a given MPTCP
connection and VPN tunnels are generic, good for any
connection detouring via the corresponding waypoint.

• It requests new detours from the client daemon as needed.
In our current prototype, the path manager requests new
detours any time a new MPTCP connection is established;
a real implementation would use a more flexible policy,
which could request new detours whenever the available
detours become scarce.

• It selects and adds detour subflows to MPTCP connec-
tions, as well as withdraws existing subflows according
to a detour exploration strategy5.

The client daemon receives requests for detours from the
path manager, negotiates tunnels with the waypoints, and
reports successfully established tunnels back to the path man-
ager. In a real implementation, the client daemon would need
to discover available waypoints in the collective and choose
the ones to set up tunnels with.

Since the same VPN tunnel can be (re)used for any
connection to any server, the client daemon can establish
it either in response to request from the path manager or
proactively, and inform the path manager of its availability
ahead of the need. In contrast, a NAT tunnel can only be
used for a particular destination’s IP address and port number,
which must be communicated to the waypoint during the
tunnel establishment. Thus, NAT tunnels are established on
an explicit request from the path manager.

The above considerations may lead to intricate policies for
detour selection and tunnel establishment. With our focus on

5This strategy is a major direction for future work. Our prototype imple-
ments a trivial policy where the path manager attempts to create and maintain
two subflows for each connection.

the basic groundwork, our prototype uses the following simple
setup. The daemon has a configuration file which lists the IP
addresses of waypoints to use for both types of detours.

On startup, the daemon creates a netlink socket to communi-
cate with the path manager, starts an instance of the OpenVPN
client process for each available VPN waypoint, and waits for
all VPN tunnels to fully initialize. A new thread is used to
monitor each OpenVPN client, logging any relevant messages.

Next, the daemon opens a UDP socket corresponding to
each NAT waypoint in its configuration file. These sockets
will be used to negotiate tunnels upon a request from the path
manager.

Finally, the daemon reports all OpenVPN clients to the
manager, and begins waiting for requests. For each request
from the path manager, the client daemon sends a UDP
request to every NAT waypoint. For each received response,
the daemon sends the final NAT detour information (the IP
addresses and port numbers of the tunnel’s endpoints) over the
netlink socket to the path manager. Note that a client can use
the same NAT waypoint for multiple connections; however, a
separate tunnel negotiation is required for each connection.

In summary, our prototype implements a primitive client
daemon that makes available to the path manager all available
VPN detours on a startup, and sets up NAT tunnels to all NAT
waypoints on a first request from the path manager. For another
connection, the path manager will send another request, and
the daemon will set up another set of NAT tunnels to the same
waypoints.

C. DCol Waypoint

A DCol waypoint consists of a detour daemon that listens on
requests from clients and invokes local executables to perform
requested actions. The detour daemon can operate in two
modes - VPN or NAT. In the VPN mode, the detour server
simply starts an OpenVPN server. When a client wants to
establish a VPN tunnel with the waypoint, the client connects
to the VPN server running on this waypoint directly.

Establishing an OpenVPN tunnel requires the two parties
to authenticate each other. To this end, each member of a
DCol collective has a certificate signed by the a root certificate
authority common to the collective. All members store this
root certificate – which represents the shared trust among the
collective – so they are able to verify the certificates of each
other. Once both parties perform mutual authentication using
their certificates, the VPN is available for the client to tunnel
packets to any IP address.

In the NAT mode, the detour waits for client detour requests
on a UDP socket. A request contains the IP address and port
number of the end-server the client wishes to communicate
with. Upon receiving a request, the detour daemon allocates
a unique port to this tunnel, creates the corresponding NAT
mapping rule using IPTables, and sends a UDP response with
the allocated port back to the client. The client will use
this port and the waypoint’s IP address as the destination
address/port number for the corresponding subflow; in the

meantime, the waypoint will use standard Linux NAT func-
tions to rewrite the address and port information as it forwards
the packets between the client and the end-server, as described
in Section IV-A2.

V. PRELIMINARY EVALUATION

It has been well established that one-hop overlay routes
can improve connection latency, loss rate, and throughput [1],
[2], [15]. Further, discovering and exploring waypoints for
advantageous detours is a major next topic and is outside
the scope of the present paper. The goals of our preliminary
evaluation are as follows:

• Given a network where an alternative path with better
connection properties exists, demonstrate the ability of
DCol to automatically and transparently leverage the
alternative path to improve communication throughput;

• Given a network where the core rather than access links,
is the bottleneck, demonstrate the ability of DCol to
automatically and transparently aggregate the throughput
of alternative paths;

• Assess the overhead imposed by DCol compared to
standard TCP across the default route or a detour;

• Examine the difference in performance of the NAT and
VPN detours.

A. Methodology

We use network emulation based on Mininet [22], a tool that
allows emulation of large networks on a single test machine
using the native operating system networking stack. It has been
noted that Mininet timing fidelity can suffer in situations with
high load [23]. We verified that our test machine could emulate
networks with throughput up to 24 Gbps. To ensure that our
experiments did not approach the limits of Mininet’s timing
fidelity, we limited the bandwidth of each link to no more
than 20Mbps, so that the aggregate traffic throughput will be
an order of magnitude below the capacity of the emulation
environment, and limited each emulated host to using no more
than a tenth of the available processor time. As a result, CPU
utilization of the test machine was no higher than 5% over the
course of each experiment. The rather low absolute bandwidth
values do not affect our findings because our goal is to study
the relative performance of different approaches and not the
absolute performance of any given solution. Further, the lower
capacity core links actually reflect a realistic scenario where
the network core can only provide a fraction of capacity to
the connection in question.

Our network topology is illustrated in Figure 3. The routers,
client, server, and waypoint are Linux hosts. The routers have
statically configured routes, so that the default route from
client to server traverses Link 2.

To study the effect of a core bottleneck, we consider the
following basic network configurations:

• Symmetric. Each link has the same characteristics:
10Mbps bandwidth and default 5ms delay (unless over-
ridden by a delayed configuration below for link 2).

client server

detour

r1 r2

r3

10.0.6.1

10.0.6.2

10
.0
.1
.1

10
.0
.1
.2 10.0.2.1 10.0.2.2

10
.0
.3
.1

10
.0
.3
.2

10.0.4.1

10.0.4.2

10
.0
.5
.2

10
.0
.5
.1

Link 1 Link 2 Link 3

Link 4 Link 5

Link 6

Fig. 3. Experimental network topology. Core links are highlighted in red.
Access links are highlighted in blue.

• Core-limited. Each link within the network “core” (i.e.
links 2, 4, and 5) have 10Mbps of bandwidth and a 5ms
delay (unless overridden by the delayed configuation for
link 2), while the access links (i.e. links 1, 3, and 6)
are assigned 20Mbps, with the same 5ms delay. This
aims to simulate a situation in which the access link can
support more bandwidth than the default Internet path can
support.

To consider the effect of a possible disadvantaged direct
path, we further consider the following link 2 characteristics:

• Lossy. Link 2 is configured to drop packets independently
and randomly with probability 0.01. This is within the
range of packet loss rates Savage et al. observe over “bad”
paths in their Detour study [1]. We briefly examined loss
rates of 0.5%, 2%, and 5%, with similar results to the
ones presented here.

• Delayed. Link 2 is configured to have a high (100ms)
latency. We also tested latencies of 20ms and 50ms,
although 100ms was the first to show observable differ-
ences in throughput.

The above settings result in the total of six network config-
urations: symmetric, symmetric/lossy, and symmetric/delayed,
and the same variations of the core-limited configuration.
We compare the performance the following communication
scenarios:

• 1-Subflow. MPTCP is enabled, but no detours are config-
ured on the client. The connection uses only one subflow,
across the Internet-routed path. This scenario will allow
us to assess the inherent overhead of MPTCP over regular
TCP. It also represents DCol communication when the
client does not use any detours.

• NAT. In addition to a subflow on the Internet routed path,
a second subflow is through a NAT detour. This scenario
represents DCol communication with two subflows, one
over the Internet-routed path and the other over a detour
with a VPN tunnel.

• OpenVPN. In addition to a subflow on the Internet routed
path, a second subflow is through an OpenVPN detour.
Same as above, but with a NAT tunnel.

• TCP. MPTCP is disabled. A regular TCP flow is used,
across the default Internet routed path. The default Linux
congestion control (CUBIC) is used. This is the baseline
case.

• TCP(NAT). A regular TCP flow is used, but it is directed
through the NAT detour. This another reference case
allowing us to see the inherent overhead of the NAT
tunnel.

• TCP(OpenVPN). A regular TCP flow is used, but it is
directed through the VPN detour. Same as above, but with
a VPN tunnel.

We use TCP throughput between client and server
to assess the network performance. Throughput is measured
with a 10 second iPerf [24] session, which involves trans-
mitting as much data as possible over a TCP (or MPTCP)
connection6. In our experiments, the TCP flows reached their
peak throughput within less than a second. Since MPTCP has
a slower mechanism for closing a connection than standard
TCP, MPTCP iPerf sessions lasted a few seconds longer
than the TCP sessions. During these final seconds, the data
throughput slowed down significantly. To focus on steady state
performance, we filter out the first second and any remaining
time after 10 seconds. Thus, for each trial, we measure the
throughput as the number of bytes transmitted during these 9
seconds, divided by 9 seconds.

We ran 60 trials for each experiment and depict the results
as box-and-whisker plots. The throughput of each considered
scenario is represented by a box outlining the first and third
quartiles of the results for individual trials, with a line through
the center representing the median. The whiskers show the
spread of the data, and points outside of 1.5 times the
interquartile range are marked with circles as outliers.

B. Results

Figure 4 shows a performance comparison of the commu-
nication alternatives on the symmetric network without loss
or latency. Since there is no bottleneck at the core in this
scenario, MPTCP, as well as tunneling through a waypoint,
can only add overhead to the regular TCP connection. The
purpose of this experiment is to assess these overheads. We
make the following key observations.

First, the overhead of single-subflow MPTCP with no tun-
neling (“1 subflow”) compared to TCP is 130Kbps at the me-
dian in this scenario, amounting to a 1.4% loss in throughput.
We traced this overhead to the presence of MPTCP’s DSS op-
tion, the extra 20 bytes that the Linux MPTCP implementation
tends to include into every data packet. This is the inherent
overhead of our solution.

Second, by comparing the TCP and TCP (NAT) through-
puts, we can observe the overhead of NAT tunneling. This
overhead is due to processing at the waypoint and the higher-
latency communication path, and in particular it gives an upper

6For convenience, we transfer data from the client to the server. Since our
current client uses the standard MPTCP subflow scheduler, the performance
of data transfer from the server to the client would be similar with the same
subflow scheduler.

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)
9.1

9.2

9.3

9.4

9.5

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 4. Throughput comparison: Symmetric network

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

4

5

6

7

8

9

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 5. Throughput comparison: Symmetric network with lossy direct path

bound on the processing overhead at the waypoint. We see
200Kbps overhead, or just over 2%.

Third, by comparing the TCP and TCP (VPN) throughputs,
we can observe the overhead inherent in the VPN mechanism
when compared to TCP over the default route. We see a greater
overhead of about 430Kbps, or 4.5%. This overhead is largely
explained by the per-segment extra 36 bytes of OpenVPN
headers plus the OpenVPN processing on the waypoint.

Finally, by comparing the throughput of regular TCP
(“TCP”) with the two-subflow DCol scenarios using NAT and
VPN tunnels (“NAT” and “VPN”), we can observe the DCol
overhead when the direct path already utilizes full access
link capacity and the detour is actually not needed. DCol
with NAT tunneling exhibits 140Kbps throughput penalty at
the median, or 1.5%, while the VPN tunnel has overhead of
270Kbs, or 2.8%. Note that the overheads are lower than for
the TCP(NAT) and TCP(VPN) scenarios because the DCol
scenarios use two subflows, one of which (the one utilizing
the direct path) does not incur tunneling overhead.

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

9.10

9.15

9.20

9.25

9.30

9.35

9.40

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 6. Throughput comparison: Symmetric network with high-latency direct
path

In addition, we note that MPTCP with the added NAT detour
(“NAT” scenario) performs virtually identically to 1-Subflow
MPTCP, because the overhead in both cases is dominated
by the extra 20 bytes for the DSS TCP option. Adding a
VPN detour to 1-subflow MPTCP (“VPN” scenario) decreases
performance over TCP due to the VPN tunneling overhead,
although the VPN scenario improves the performance over
TCP (VPN), since the subflow on the default path makes up
for some of the VPN tunnel overhead.

We now turn to the scenarios where the direct route between
the end-points is disadvantaged in some way. Figure 5, shows
the effect of adding a 1% loss rate to the direct path in a
symmetric network. Regular TCP shows significant degrada-
tion in throughput (by a third at the median compared to Fig-
ure 4), and much more variable throughput as well. 1-subflow
MPTCP performs even worse, with further 2Mbps throughput
loss relative to TCP, because its default LIA congestion control
is more conservative than the CUBIC congestion control used
by regular TCP. In contrast, all detour scenarios, whether
using just a detour (which has no packet loss), or the detour
in addition to the subflow over the direct path, are virtually
unaffected by the lossy link. Any overhead noted earlier in
Figure 4 pales in comparison to the advantage of bypassing
the lossy link. Overall, the DCol scenarios achieve roughly
50% higher throughput than regular TCP in this environment.

In Figure 6, we see the impact of the high latency link
along the direct route, still in a network with otherwise
symmetric link capacities. The added latency does not affect
the performance nearly as strongly as the packet losses,
with all alternatives achieving between 9.1 and 9.4 Mbps
throughput. Still, by sending a significant portion of traffic
over the low-delay path7 DCol with NAT tunneling (“NAT”)
slightly outperforms regular TCP. For the alternatives with

7We use MPTCP’s standard lowest-RTT-first scheduler. We checked the
division of data between subflows in one of the runs and found that 82.3%
of the data was across the lower-delay detour.

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 7. Throughput comparison: Core-limited network

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 8. Throughput Comparison: Core-limited network with lossy direct path

VPN tunneling (both detour-only TCP(VPN) and DCol’s two-
subflows VPN), the benefit of bypassing the high-delay link
does not fully compensate for the VPN overhead, resulting in
slightly lower performance relative to regular TCP. Nonethe-
less, DCol’s throughput with VPN tunneling is within 2% of
DCol with NAT tunneling.

The results for the core-limited network are much different.
Figure 7 shows a comparison of throughput on the core-
limited network, with no loss or latency. Since the detour
path traverses different core links than the default path, there
is a potential to aggregate the capacity of both paths. The
figure shows that DCol is able to effectively aggregate the
capacity of both paths: the two-subflow scenarios using either
NAT or VPN tunnels achieve almost double the throughput
of regular TCP. Said differently, the two-subflow DCol with
the NAT detour achieves 98.4% of the sum of the throughputs
of TCP and TCP (NAT). The two-subflow DCol with VPN
detour obtains a 98.3% of the sum of the throughputs of TCP
and TCP (VPN).

1 Subflow NAT VPN TCP TCP (NAT) TCP (VPN)

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 9. Throughput comparison: Core-limited network with high-latency direct
path

When loss is introduced, Figure 8 shows that all scenarios
using a detour significantly outperform regular TCP over the
direct path. When only using the detour path, TCP achieves
roughly 50% higher throughput than regular TCP (detour’s
9.33 or 9.56Mbps, depending on the tunnel used, vs. regular
TCP’s 6.27Mpbs at the median). With two subflows, DCol’s
performance gain exceeds the factor of two since, even though
the direct path is lossy, it is able to contribute some throughput
to the MPTCP connection.

Similarly, when latency is introduced, Figure 9 shows that
DCol continues to aggregate throughput across the direct and
detour paths. As in the case of the symmetric network, the
effect of added latency on the throughput is slight, and the
overall performance trends are the same as in Figure 7

C. Summary of Results

When no detour is needed, DCol exhibited an overhead over
regular TCP in our experiments of just over 1.5% with NAT
tunneling and 2.8% with VPN tunneling. This overhead is
quickly overcome when a better detour than the direct path
can be found. When path bandwidth aggregation is possible,
DCol is capable of aggregating over 98% of the sum of the
throughputs achieved by TCP across both paths.

Across all the scenarios, DCol with NAT tunneling has
slightly higher performance than with VPN tunnels, due to the
additional overhead of the IP and UDP encapsulation, along
with OpenVPN protocol overhead and latency.

VI. FUTURE WORK

The proof of concept prototype an architectural framework
for utilizing detours in an application is but the first step
towards the vision this paper presents. In addition to a number
of directions for future work mentioned throughout the paper,
a fundamental question is the strategy in finding beneficial
detours and selecting the ones to use for a given connection.
There has been much work on routing in overlay networks
and finding detours (e.g., [5], [25]) but our vision brings

this question back to the fore. In particular, much of prior
work in this area has focused on selecting detours based on
predicted path latencies, while our preliminary study indicates
that packet loss and capacity of a path, which are much harder
to predict without an ad-hoc measurement (and harder to
measure), play a dramatically greater role.

A related issue is data scheduling among subflows. While
our prototype uses default MPTCP scheduler, one can easily
see its limitations for our purposes. First, the current scheduler
can only affect data sent from the client to the server, while
data often flows in the other direction. Since the default
schedules use RTT as a key factor in their scheduling policy,
a custom client’s scheduler can indirectly affect the server’s
scheduler by delaying subflow-level acknowledgements and
thus modifying the RTT values seen by the server.

For the data sent by the client, one could explore a number
of scheduling strategies, such as sending data redundantly
over new subflows so that there is no performance penalty
when assessing the characteristics of a new subflow, estimating
the packet loss and capacity of the subflow from the traffic
dynamics and using these factors in scheduling decisions,
sending only small amount of data on new subflows until
their performance has been assessed, communicating subflow
performance to the path manager, which could decide to close
underperforming tunnels and/or request new detours of the
client daemon, etc.

Another issue concerns traffic attribution. Similar to exit
nodes in Tor [26], waypoints act as exit hosts for someone
else’s traffic and appear externally as the traffic originators.
Depending on the nature of the traffic, this can be undesirable
for the exit host. Fortunately, unlike Tor, whose goal is to
provide anonymity to the clients, DCol does not hide client
identity, and a detour always knows the client responsible for a
given connection. This should provide a basis for an extension
to tunnel negotiation that would give the waypoint Irrefutable
proof of attribution. In fact, OpenVPN authentication process
already provides such proof for VPN tunnels. NAT tunnel ne-
gotiation would need to be endowed with a similar mechanism.

A further optimization appears possible in regard to NAT
tunnel negotiation, which in our current prototype is done
as a separate UDP exchange before each subflow. Following
the approach used in IETF’s MPTCP proxying draft [9],
we could instead piggyback this negotiation on TCP control
segments involved in the subflow establishment. The initial
SYN segment of a new subflow to a waypoint would be
addressed to a default port on the waypoint and embed the
final destination’s IP address and port number into a special
TCP option. When forwarding the SYN-ACK segment back
to the client, the waypoint would include, also into a TCP
option, the waypoint’s port number for subsequent segments
on this subflow.

Finally, a system for maintaining the membership in the
DCol collective is needed for a real deployment, which would
allow hosts to join and depart the system and would provide
machinery to disseminate membership data to the individual
members so they could use this information to select candidate

waypoints. Given the amount of work addressing similar issues
in peer to peer systems, this represents a significant but
technical challenge, with rather clear ways to implement the
required functionality.

VII. CONCLUSION

It has long been observed that communication between a
client and a content server using overlay detours may result
in substantially better performance than a native path offered
by IP routing. With the emerging gigabit-to-the-home access
networks, where the bottleneck is no longer at the last mile,
the potential benefits of detours are likely to only grow. This
paper presents our vision of how to achieve detour communi-
cation in a generic way, without requiring any changes to the
applications or content servers.

We envision gigabit Internet users to form cooperatives in
which members serve as detour waypoints to each other’s
Internet experience. To make detours transparent to the server,
we leverage MPTCP, which normally allows a device to
communicate with the server on several network interfaces
in parallel but we use it to communicate through external
waypoint hosts. The waypoints mimic MPTCPs subflows to
the server, making the server oblivious to the overlay detours
as long as it supports MPTCP. At the same time, because all
functionality concentrates within the transport layer, network
applications using TCP automatically benefit while being also
unaware of this change.

We present our architectural framework, DCol (for “Detour
Collective”), and a proof-of-concept prototype that shows
that key building blocks for DCol already exist and setting
up usch a collective involves mostly integration of existing
technologies . Given the groundwork described in this paper,
the main direction for future work is developing and imple-
menting strategies for exploring candidate waypoints and for
controlling how traffic is split among them.

REFERENCES

[1] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorian,
“Detour: Informed internet routing and transport,” Ieee Micro, vol. 19,
no. 1, pp. 50–59, 1999.

[2] P. K. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
D. Wetherall et al., “Improving the reliability of internet paths with
one-hop source routing.” in OSDI, vol. 4, 2004, pp. 13–13.

[3] H. Zheng, E. K. Lua, M. Pias, and T. G. Griffin, “Internet routing policies
and round-trip-times,” in PAM, 2005, pp. 236–250.

[4] S.-J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu,
“Bandwidth-aware routing in overlay networks,” in INFOCOM, 2008,
pp. 1732–1740.

[5] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in internet routing overlays.” in NSDI, 2009,
pp. 467–480.

[6] Akamai, “SureRoute,” https://developer.akamai.com/learn/Optimiza-
tion/SureRoute.html.

[7] M. Allman and M. Rabinovich, “Rethinking home net-
working for the ultrabroadband era.” [Online]. Available:
https://www.nsf.gov/awardsearch/showAward?AWD ID=1647145

[8] O. Bonaventure and S. Seo, “Multipath tcp deployments,” IETF Journal,
vol. 12, no. 2, pp. 24–27, 2016.

[9] M. Boucadair, C. Jacquenet, D. Behaghel, stefano.secci@lip6.fr,
W. Henderickx, R. Skog, O. Bonaventure, S. Vinapamula,
S. Seo, W. Cloetens, U. Meyer, L. M. Contreras, and
B. Peirens, “Extensions for Network-Assisted MPTCP Deployment
Models,” Internet Engineering Task Force, Internet-Draft draft-
boucadair-mptcp-plain-mode-10, Mar. 2017, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-boucadair-
mptcp-plain-mode-10

[10] M. Boucadair and C. Jacquenet, “RADIUS Extensions for Network-
Assisted Multipath TCP (MPTCP),” IETF Draft, Tech. Rep., Oct.
2017. [Online]. Available: https://tools.ietf.org/id/draft-boucadair-mptcp-
radius-05.html

[11] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 266–277.

[12] L. Boccassi, M. M. Fayed, and M. K. Marina, “Binder: A system
to aggregate multiple internet gateways in community networks,” in
Proceedings of the 2013 ACM MobiCom Workshop on Lowest Cost
Denominator Networking for Universal Access, ser. LCDNet ’13.
New York, NY, USA: ACM, 2013, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2502880.2502894

[13] J. Duncanson, “Inverse multiplexing,” IEEE Communications Magazine,
vol. 32, no. 4, pp. 34–41, April 1994.

[14] M. Sargent and M. Allman, “Performance within a fiber-to-the-home
network,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 22–30, 2014.

[15] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient
overlay networks. ACM, 2001, vol. 35, no. 5.

[16] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang,
“A transport layer approach for improving end-to-end performance
and robustness using redundant paths.” in USENIX Annual Technical
Conference, General Track, 2004, pp. 99–112.

[17] J. Postel et al., “Internet Protocol,” RFC 791, Sep. 1981. [Online].
Available: https://rfc-editor.org/rfc/rfc791.txt

[18] F. Gont, R. Atkinson, and C. Pignataro, “Recommendations on Filtering
of IPv4 Packets Containing IPv4 Options,” RFC 7126, Feb. 2014.
[Online]. Available: https://rfc-editor.org/rfc/rfc7126.txt

[19] C. Paasch, S. Barré et al., “Multipath TCP in the Linux Kernel,”
http://www.multipath-tcp.org.

[20] J. Yonan et al., “OpenVPN,” http://openvpn.net.
[21] “generic netlink howto,” Linux Foundation

Wiki, Tech. Rep. [Online]. Available:
https://wiki.linuxfoundation.org/networking/generic netlink howto

[22] “Mininet: An instant virtual network on your laptop (or other pc),” 2012.
[23] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[24] J. Dugan, S. Elliott, B. A. Mah, and K. Prabhu, “Iperf3.” [Online].
Available: http://software.es.net/iperf/

[25] S. W. Ho, T. Haddow, J. Ledlie, M. Draief, and P. R. Pietzuch,
“Deconstructing internet paths: an approach for as-level detour route
discovery.” in IPTPS, 2009, p. 8.

[26] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.

