PyWall: A Python Firewall

By the PyWall Team
Stephen Brennan, Jeffrey Copeland, Yigit Kucuk, Andrew Mason

Background

Firewalls

Firewalls permit or deny network traffic based on a configurable set of criteria. Typical filtering
rules include source/destination IP address, protocol, and source/destination port. Modern
firewalls include stateful rules that consider a sequence of interactions over time instead of
individual packets, allowing firewalls to implement features like TCP connection tracking and
port knocking. Because of their simplicity and subsequent speed, firewalls often serve as a first
line of defense against network-based attacks.

Understanding the underlying mechanisms of a firewall is important if one is interested in
computer security. Because implementing a system is the best way to understand its
underpinnings. we have implemented a firewall using Python and some Neffilter tools. Before
going into the details of our implementation, we should give some background on TCP, the
Netffilter project, python-netfilterqueue, and IPTables.

TCP (Transmission Control Protocol)

TCP, along with UDP, is responsible for nearly all traffic at the transport layer of the internet.
TCP in particular is worth noting for two reasons. First, it is overwhelmingly the most popular
transport layer protocol, accounting for 82% of traffic and 91% of bytes transmitted on the Web
according to a 2013 study. [3] As a result, having a firewall that can filter on TCP packets is of
the utmost importance. Second, TCP is connection-based, and therefore a stateful protocol.
This adds a level of complexity to implementing anything more than simple port filters which will
be discussed later in the paper.

Netfilter Framework

The Netffilter framework is a set of packet filtering packages included in the Linux kernel. Of
concern to our project, netfilter provides the ability to hook into kernel modules at various points
in the network stack. Several libraries, notably python-netfilterqueue (discussed below),
leverage this feature to listen for incoming packets and then filter them.

Using the Netfilter framework ordinarily would add an additional layer of complexity to the scope
of the project since it would require implementing our own kernel module. However, developing
a Linux kernel module is very difficult and time consuming. They must be written in C, which

1



presents a serious amount of development overhead for a term project. Additionally, debugging
kernel modules is more difficult than debugging regular C programs, which would add even
more difficulty to the project. Ideally, we would implement a firewall in a high-level language so
we could focus on the concepts behind the implementation, without getting bogged down in the
nuts-and-bolts of C and kernel module development. Thankfully, we were able to find a way to
develop a firewall without creating a kernel module.

python-netfilterqueue

One package that assisted us was libnetfilter_queue, a C library from the Netfilter project that
gives user processes control over packets the kernel has received. This library can then inspect,
modify, accept, and/or drop the given packet -- precisely the functionality needed for a firewall.
[1] Additionally, there is a library called python-netfilterqueue that provides Python bindings for
libnetfilter_queue. This gave us the ability to attach a callback to an IPTables queue that gets
called each time the kernel receives a packet. [2] Having low-level access in a high-level
language like Python allowed us to focus more on firewall functionality than on C’s nitty-gritties.

IPTables

Part of the Netffilter suite, IPTables allows sysadmins to configure the various tables in the Linux
firewall. As mentioned above, we used a Python library to receive callbacks from the
libnetfilter_queue package. The following commands were used to set up and tear down the
firewall, respectively (readers should note that these commands, and therefore our firewall, must
be run as root):
e iptables -I INPUT -j NFQUEUE --queue-num [number]
o Insert a rule into the iptables to hook into NetfilterQueue at the given [number] in
the queue
e iptables -D INPUT -j NFQUEUE --queue-num [number]
o Remove the rule that hooks into NetfilterQueue (tears down the firewall)

Aims

The aim of the project was of course to implement a firewall. Specifically, we wanted to produce
an academically interesting firewall rather than a production-ready, high-performance firewall.
For this reason, and those discussed in the above section, we chose to implement this project in
the Python programming language, using the bindings provided in the python-netfilterqueue
package.

A typical firewall includes two components: an ingress and an egress filter. The ingress portion
filters incoming packets, and the egress portion filters outgoing packets. Egress filtering is
important in order to prevent attacks “from the inside”, where a malicious program on the
machine running the firewall creates an outgoing connection. Although this is an important
application of a firewall, we chose to implement only an ingress filter. Implementing both
ingress and egress filtering would have added extra implementation effort, without adding much
additional academic interest in our implementation. Instead, we decided to focus on



implementing simple stateless firewall rules, as well as two firewall rules that are significantly
more complex than what was presented in class on the topic of firewalls.

The first complex rule we decided to implement was a stateful TCP connection tracking rule.
This type of rule is important in order to filter based on whether packets are part of existing
connections. Part of the netfilter project includes a library, libnetfilter_conntrack, which gives
access to the kernel's connection state table. However, we decided that using the kernel’s
connection table would take away a key aspect of the concepts behind the implementation of a
firewall. Therefore, we chose to implement our own TCP connection tracking facility.

Our second complex rule was a port knocking rule. Port knocking is a technique where an
external host can gain access to a port on the host running PyWall, by executing a correct
sequence of “knocks.” These knocks are connection requests on specific TCP or UDP ports.
This layer of protection is a useful way to allow remote connections to your computer, while
preventing unauthorized hosts from accessing those same ports.

Design

Design Constraints

One constraint we faced during the development of PyWall was the design of the Python
binding to libnetfilter_queue. In order to implement something as complex as a TCP
connection tracker, a program must be able to examine both ingress and egress traffic -- one
side of the connection is not enough to track the TCP connection state. So, PyWall had to be
capable of receiving ingress and egress traffic, even though our aim was only to create an
ingress firewall. The design of libnetfilter_queue is such that we had a few options to direct
incoming and outgoing traffic to a userspace program:

e Create rules redirecting input and output to the same queue. This would require that the
userspace program separate ingress from egress packets via packet headers, which are
easily forged.

e Alternatively, we could create two queues, and redirect input into one, and output into
another. This requires that the userspace firewall listen bind and read from two neffilter
queues.

The C library provides an interface where a single queue binding provides a file descriptor [4].
In theory, more than one queue handle and file descriptor could be created, and a program
could listen to more than one stream of packets (for instance, by making use of the POSIX
select system call). This way, a single program could handle an ingress and an egress packet
stream in the same process. However, the Python binding to libnetfilter_queue creates a
different API. It requires the user to create an instance of the NetfilterQueue class, bind to a
single queue, and provide a callback. Then, the APl user invokes the run() method of the
queue instance, and the program hangs until a packet is received, at which point the callback is
called with the packet data. The consequence of this API structure is that, while a C program



could listen to multiple queues, a Python program is limited to a single queue for a single
process.

Process Structure

Due to the limitation above, we had to create a multiprocess system in order to track connection
state. We defined three different processes: the connection tracking process, the egress
monitor process, and the ingress filter process.

A\

Egress Monitor PyWall (Ingress)
=
B E
2 Report TCP 3
% Report state to queries - Report Incoming =
o Outgoing TCP Packets <]
5 TCP Packets - Query TCP state L

TCP Connection Tracker

<

The connection tracker process is the master process. On startup, it creates three Python
multiprocessing communication channels: two queues (single directional communication) and
one pipe (bidirectional communication). It then spawns the egress and ingress processes. It
provides the egress process with a queue, and the ingress process with a queue and a pipe.
The queues are used by the ingress and egress monitor to report the SYN, ACK, and FIN flags
for each TCP packet that goes through the monitor. The pipe is used by the PyWall ingress
filtering rule to request the status of a TCP connection. The TCP connection tracker sets up the
processes and IPC, and then it creates an instance of the PyWallCracker, which then handles
TCP connection tracking.

The Egress monitoring process simply waits on a neffilter_queue. If the packet received from
the queue is TCP, it places the connection tuple (source IP, source port, destination IP,
destination port) along with the three important flags (SYN, ACK, FIN) into the queue it shares
with the connection tracker. Finally, it always accepts packets it receives from Neffilter queue.
The PyWall (Ingress) process has more duties than just TCP monitoring, but it performs the
TCP monitoring in the same way, except that it only reports TCP packets that are accepted by
the firewall.

The PyWallCracker implements the task of tracking TCP connection state. It receives the
three communication channels outlined above, and it waits (using the POSIX select system

4



call) for input from one of them. If it receives input from the query pipe, it looks up the queried
connection in its table. If it exists, it returns the state of the connection, otherwise it reports the
connection state as “CLOSED”. When the connection tracker receives input from one of the
packet reporting queues, it looks up the connection, and performs the transition specified by the
TCP connection state machine.

In order to encode the TCP connection state machine, we first looked up the specification for
TCP, RFC 793 [5]. This document, while originally published in 1981, is still accurate in the
majority of its specification of TCP, including its state machine (according to RFC 7414,
published in February 2015) [6]. The TCP state machine presented in RFC 793 specifies the
lifetime of a TCP connection, from open to close. We implemented this entire state machine
within PyWallCracker except for a few key differences:

e RFC 793 has CLOSED and LISTEN as separate states, but from the perspective of TCP
segments sent on the wire, there is no difference between these states, so we grouped
them together.

e RFC 793’s state machine specifies the states from the perspective of the TCP “network
stack.” That is, it contains transitions in which the TCP stack receives a segment and
sends a segment in the same transition. Since our connection tracker only observes a
single segment at a time, such transitions were broken into two transitions, with an
intermediate state. For example, due to the two-step transition between LISTEN and
SYN_RCVD, we were forced to break SYN_RCVD into two states, SYN_RCVD1 and
SYN_RCVD2.

Using this modified state machine, we created two long “case” statements, one for received
segments, and one for sent segments. We included a case for each state where a transition
could occur (either for receiving a segment or sending a segment, depending on the case). In
the event that a segment’s flags did not match a legal transition according to the state machine,
we output an error message, and kept the connection in the same state.

The only exception to this rule was for segments whose connections were in the CLOSED state,
but whose flags did not match any legal transition from CLOSED to another state. We observed
that this would only occur when the firewall started up, and existing TCP connections were
running. When the connection tracker observes an illegal transition out of CLOSED state, it
assumes that this is due to an existing TCP connection that had not been recorded, and it
transitions that connection into the ESTABLISHED state. This does not compromise the
security of the firewall and connection tracker, due to two assumptions. The first is that, by
virtue of writing an ingress firewall, outgoing traffic is trusted implicitly. The second is that,
although an incoming TCP segment could theoretically cause the transition from CLOSED to
ESTABLISHED, it would have to be accepted by the firewall before it would be sent to the
connection tracker to do so. Therefore, any packet incoming segment which caused the
CLOSED to ESTABLISHED transition would already be a trusted segment.



There is one other process not mentioned in the above architecture. It is a logging process,
whose purpose is simply to receive log messages from the other processes and collate them
into a single log for the entire process. A single log process avoids redundancy in the code, and
prevents issues from simultaneous file writing by multiple processes.

Class Structure

Our packet filter's design mirrors that of IPTables. In principle, the packet filter is made up of
two types of objects: chains and rules. Chains are named sequences of rules. Rules may
either match a packet and cause a jump to a new chain, or fail to match, in which case the
packet is tried against the next rule in the chain. Packets start in the INPUT chain, and they end
in one of two chains: ACCEPT, or DROP. In the case that a packet reaches the end of a chain,
and no rule has matched, there is a configurable default chain specifying either ACCEPT or
DROP. This way, the firewall rule set can be created to drop only certain packets, or to allow
certain packets.

To allow this interface, we define several classes. The Rule class is abstract, and it defines the
base for all other classes. It defines a single function, __call (). This is a Python “magic
method” which allows instances of the class to be called as if they were functions. The method
must return either the name of the next chain, if the rule matches, or False otherwise. In
addition to the Rule class, we also define a subclass named SimpleRule. This class accepts
the target chain in its constructor, and defines a single method named filter_ condition.
When the filter condition is true, it will return the target chain. When the filter condition is false, it
will return False. This SimpleRule serves as the foundation for most of our rules. However,
some rules (such as the PortKnocking rule) require more fine-grained control of the the
packet’s return chain, and so they simply subclass Rule.

Usage

Main Program

To run PyWall, enter the directory containing main.py and call sudo python main.py
path-to-config-file. (PyWall requires root to bind to a network layer socket, modify
IPTables rules, and to use libnetfilter_queue.)

PyWall config files are specified in JSON. The config parser loads the top level JSON dictionary,
and looks for the “default_chain” attribute, which specifies whether unmatched packets are put
into “ACCEPT” or “DROP”. Every other entry in the config is the name of a PyWall chain,
mapping to a list of rules. Every rule is also a JSON dictionary, with the rule class name
specified in the field “name” and with other entries being keyword arguments to that rule’s
constructor. (See example/example. json for an example configuration file.)

Rule Classes

e PortRule - Filters on a single source/destination port
e PortRangeRule - Filters if source/destination port falls within a given range

6



SourceIPRule - Filters on a source IP address

DestinationIPRule - Filters on a destination |P address

IPPortRule - Filters on a combination of PortRule and Source/Destination|PRule
PortKnocking - Allows connection on specified port after a sequence of doors (i.e. pair
of protocol and port) are knocked on (i.e. have connection requests on).

PrintRule - Prints the packet on standard output.

TrueRule - Always matches. Most useful to prevent a chain from falling through to the
default chain.

TCPRule - Matches if a connection is TCP.

TCPStateRule - Matches if a packet is part of a connection with a given state.

For the list of arguments that each of these rules take, please refer to RULES.md.

Testing
PyWall has three types of tests: wunit tests (./unit_test), integration tests
(./run-integration-tests.py), and acceptance tests (. /run-acceptance-tests.py).

Unit tests live in the test/unit subdirectory. They create a Packet object and and confirm that
Rules accept, drop, or pass these forged packets as specified. Because Rules operate on
internal Packet objects, testing Rules can happen independently of the firewall’s remaining
machinery.

Integration tests live in the test/integration subdirectory and check for the firewall’s
correctness with most parts moving. For each test, the firewall is started with a given
configuration, and two sockets, a client and a server (listener), are opened on the loopback
interface. The server will listen for a connection from the client. If the configuration is supposed
to block some operation, the socket read should time out; if the configuration is supposed to
allow some operation, the server should accept a connection and/or read some data. The
listener reports whether or not it received a connection back to the test case, which in turn
determines whether the test passes or fails.

Acceptance tests live in the test/acceptance subdirectory and they simulate a typical use
case by having a remote machine perform some network operation on a target machine running
PyWall. There are two components to these acceptance tests -- local scripts, which run on the
target and live in test/acceptance/local (i.e. the machine running PyWall), and remote
scripts, which run on the remote host and live in test/acceptance/remote (i.e. the machine
that will send packets to the target.) The PyWallAcceptanceTestCase class sets up a listener
on the target, then starts the specified remote module on the remote host via SSH. (The
configuration file for this can be found in test/acceptance/local/conf.py) The listener then
reports whether or not it receives a connection or data to the test case, which then decides the
outcome of the test.



Limitations & Future Work

TCP Connection Tracking

Unfortunately, creating a TCP connection tracking system is very complex. TCP
implementations differ from the RFC 793 specification, and so a connection tracker written to
the specification sometimes fails to follow the state of some connections. For instance, RFC
1122 describes a half-duplex close sequence, which is implemented by the Linux TCP stack [7].
Additionally, we noticed that some TCP implementations perform a compressed close
sequence: “FIN - FINACK - ACK,” as opposed to the close sequence specified by RFC 793:
“FIN - ACK - FIN - ACK.” We were able to modify our state machine to accept the compressed
close sequence, but we did not make any attempt to support half-duplex close sequences.
When an unrecognized set of flags appear in a TCP connection, we simply keep the connection
in the same state, and log an error. A better approach might be to mark the connection as
‘INVALID” and begin rejecting its packets. However, this would adversely affect valid TCP
connections which use non-standard extensions from the kernel's TCP implementations, so we
decided against that approach.

One way to address all of these issues would be to simply make use of the kernel’s connection
state table. This would allow the firewall to be completely aligned to the TCP stack on the host
machine. As we mentioned in the Aims section, we decided to focus on TCP connection
tracking as a main component, and using the kernel's state table would have dodged the
complexities presented by this task.

Netfilter Queue Bindings

Another limitation we faced was the design of python-netfilterqueue. As discussed in the
Design section, the design of python-neffilterqueue limited our Python program to listen on
one queue per process. However, this is not a fundamental limitation of the libneftfilter_queue
C library. We could substantially reduce the complexity of PyWall if we had a binding which
allowed us to bind to and discriminate between multiple queues. Our resulting firewall would
have a single process, and therefore a much simpler design. Given more time, we could have
created such a binding. However, we did not have enough time to create such bindings, and
such a task was out of scope for our project.

Egress Filtering
As mentioned briefly in the Aims section, although PyWall has queues for both ingress and
egress packets, it currently only performs ingress packet filtering. A firewall that lacks egress
filtering is susceptible to attacks from the inside; any program that finds its way a machine
running such a firewall can send out packets of any type to anywhere on the network. This

poses two threats:
e An attacker can use the compromised system as the launching point of another attack.
The malicious program can send packets to other machines on the network which had

8



trusted the compromised machine, and the ingress-only firewall can do nothing to stop
this.

e An attacker can trick the firewall into allowing malicious data in from the network. If the
malicious program opens a TCP connection to the attacker's IP address, the TCP
connection tracker will mark that connection as established. At this point, the attacker
can send whatever data he or she wants through this TCP connection.

With such threats in mind, future work for PyWall would be to add support for egress packet
filtering. Having egress packet filtering would thwart attacks from the inside, and make our
firewall considerable for practical use.

Performance Limitations

A second concern regarding our firewall is related to its speed, as noted above. Because we
have implemented our firewall in Python, a high-level language, it is unavoidably slower than a
C implementation. We are aware of this limitation and reiterate that the purpose of this project
was to explore the implementation details of firewalls and packet filtering, not to get slowed
down with the implementation details of C and kernel hooking.

We measured two performance benchmarks: latency and throughput. Latency was measured
by pinging a host on the same wireless subnet with the ping tool and recording the RTT over 64
trials with PyWall running with the example config and without PyWall running at all. We found
that the average ping was 1.236+0.86 ms without Pywall running and 1.611+1.317 ms with
PyWall running. Overall, it appears the latency increase from running PyWall does not severely
hamper performance on the host machine. The results are summarized in Table 1, below.

Min (ms) Mean (ms) | Max (ms) StDev (ms)
With Pywall 0.686 1.611 8.818 1.317
Without 0.752 1.236 5.579 0.860

Table 1: Latency comparison

We measured the throughput by downloading the Ubuntu 15.04 image (1.1 GB) from a web
server on Case’s network. The results are summarized in Table 2, below.

Time with PyWall 10:22.75

Time without PyWall 11:04.98

Table 2: Throughput comparison.

The throughput results above suggest a speed-up of ~7% by using PyWall. Obviously, this
must be within the margin of error for our download time. However, this result does suggest that
PyWall does not significantly slow down a normal internet connection.



(One group member consistently saw PyWall being removed from IPTables’ input queue when
transferring large files and was unable to rebind. However, 1) this behavior was not reproduced
on other members’ machines, and 2) because no exception was thrown and no exceptional
value was returned, this issue could not be fixed without changing libraries, which goes beyond
the scope of this project.)

Conclusion

In our project, we aimed to create an academically interesting firewall. Our resulting
implementation, PyWall, succeeds in this endeavor. PyWall implements a stateful ingress
firewall in a high-level language which is easy to understand. In addition to simple stateless
rules, we implemented TCP connection tracking and port knocking, as extensions to the basics
of packet filtering. As such, our firewall can be used as a learning tool for people who are
interested in learning the concepts of packet filtering, connection tracking, and port knocking,
without getting lost in the complexities of C.

References

[1 H. Welte, (n.d.). “The netfilter.org ‘libnetfilter_queue’ project” [Online]. Available:
http://www.neffilter.org/projects/libneffilter_queue/

[2] M. Fox, (2011, Oct. 14). “python-netfilterqueue” [Online]. Available:
https://github.com/kti/python-netfilterqueue

[3] S. Kulkarni and P. Agrawal, in Analysis of TCP Performance in Data Center Networks.
New York: Springer, 2013, p. 31.

[4] H. Welte, (n.d.). “libnetfilter_queue Documentation” [Online]. Available:
https://netffilter.org/projects/libneffilter_queue/doxygen/

[5] Transmission Control Protocol, RFC 793, 1981.

[6] A Roadmap for Transmission Control Protocol (TCP) Specification Documents, RFC
7414, 2015.

[7] Requirements for Internet Hosts -- Communication Layers, RFC 1122, 1989.

10



