
CWRU EECS 314 SPRING 2015 FINAL PROJECT 1

YAMS: Awesome MIPS Server
Stephen Brennan, Katherine Cass, Jeffrey Copeland, Andrew Mason, Thomas Murphy, Aaron Neyer

Abstract—We set out to build a simple web server in MIPS.
Mission Accomplished.

Index Terms—MIPS, computer architecture, HTTP, server,
MARS, ISA simulation.

I. PROBLEM STATEMENT

THE goal of this project was to write a static HTTP server
in MIPS assembly running in the MARS simulator. The

server would be able to serve a website, which is contained
in the html/ directory on port 19001. The content would
then be viewable in a browser. Sockets would be used for
networking and implemented in extending MARS syscalls,
making the high-level networking features accessible from
simulated MIPS assembly.

II. MAJOR CHALLENGES

The first major challenge in YAMS was implementing
socket syscalls. MARS was chosen early on because it allowed
for custom syscalls; however, we only found sparse documen-
tation. This required us to learn about MARS through trial
and error. Additionally, if one stops MARS while waiting on
a socket syscall, the simulator enters an error state, forcing us
to either 1) double-reassemble-run the program, or 2) restart
all of MARS. These additional steps made debugging much
slower than simulating a program without the unexpected
behavior of the Java/MARS sockets.

The larger challenge in implementing YAMS was parsing
HTTP requests. RFC 2616[1], our HTTP (Hypertext Transfer
Protocol) reference for this project, is 175 pages long. While
it is possible to implement a full HTTP stack in assembly, it is
difficult to do in one or two months. Thus, we focused on what
was required to get web pages to display in a browser: GET,
POST, Expect, and only identity encoding or Content-Length.
Additionally, because the request parser had to interact with
the socket differently depending on the request header (e.g.
Transfer-Encoding, Content-Length, and Expect), our testing
and debugging revolved around trial-and-error requests with
the Unix program curl and browsers.

III. SYSTEM COMPONENTS

After submission of the report, the entirety of the imple-
mentation is available at [2]. The breakdown of the system
components is as follows.

All authors are with the Department of Electrical Engineering and Computer
Science, Case Western Reserve University, Cleveland, OH, 44106 USA

Final Report submitted May 1, 2015, typographical revisions and clarifica-
tions May 28, 2015.

A. String Operations

In order to parse HTTP requests, we needed to im-
plement much of the C standard string library. In
mips/string.asm, we implemented strlen, strncpy,
memcpy, strcmp, strncmp, atoi, htoi, strcat,
strncat, as well as two functions for identifying the
index of characters and substrings, str_index_of and
substr_index_of respectively. To verify their correctness,
we wrote tests in mips/test_string.asm. They can be
run in MARS by loading that file as the main file, instead of
mips/main.asm.

B. HTTP Request Handling

As mentioned in Major Challenges, our focus with re-
quest parsing was on serving a page that a browser could
render. Therefore, we chose to support a subset of HTTP
request statuses (e.g. GET, POST), look for a few headers
(e.g. Content-Length, Expect), and read or write through
the socket accordingly. The logic for request parsing is
in http-requests.asm, and is reached through the
get_request method from main, returning an internal
HTTP request type, and, as applicable, request URI, request
body, request body length, and content type. The main method
takes this data and hands it off to the file loader and response
builder.

The request parser functionality was validated through trial-
and-error: seeing if debug prints contained the right informa-
tion and if the browser loaded the page properly. The mixture
of MIPS assembly and MARS syscall extensions precluded
the use of unit tests to verify the correctness of the parser’s
behavior in the given time.

C. File Access

File access is already implemented in the MARS default
syscalls, saving us the trouble of adding this feature to the
simulator. These calls were wrapped in function-like macros
for ease of use.

Additionally, the HTTP handling receives URIs (uniform
resource identifiers), not system paths. These strings needed
processing to produce a valid file path that could be con-
sumed by the MARS syscall. Our processing, implemented in
mips/file.asm, is composed of substring-blacklisting to
prevent the ../ directory from being used to access arbitrary
system resources and string operations to modify the URI into
a useful file path. The file path is created using the default
html/ directory (where our web resources are stored) as the
base relative file path and URIs with a trailing / have the file
name index.html appended. The processing operation has
tests implemented in mips/test_file.asm.



CWRU EECS 314 SPRING 2015 FINAL PROJECT 2

D. Turing Tape Language Interpreter

As an additional stretch feature, we implemented an inter-
preter for the esoteric programming language Brainfuck[3].
This simple language simulates a Turing machine’s operations
and has only 8 commands (each of which is a single character).
The interpreter is implemented in mips/brainfuck.asm,
and tested in mips/test_brainfuck.asm. When the
server is running, code can be loaded into the interpreter
by sending a POST request to the URL /load. The code
can then be run by sending input in a POST request
to the URL /run, which will return the program out-
put in its response. For a more accessible interface, the
URL /brainfuck.html provides a simple page that uses
JavaScript to transfer the code and input to the interpreter and
receive the resultant output.

IV. COMPONENT INTEGRATION

In order to integrate these different components into a
cohesive project, we had to define and follow a strict calling
convention. We decided that all functions would be called
using the JAL instruction. Only the $s0-$s7 saved registers
and global pointers would be preserved across function calls.
Arguments were passed (and not necessarily preserved) in
the $a0-$a3 registers and return values were placed in the
$v0-$v1 registers. Any additional arguments or return values
would be placed on the stack. It was the caller’s responsibility
to push the return address of its scope and any other registers
which it wanted preserved to the stack prior to calling the next
function. To facilitate conforming to these rules, we defined
macros in mips/util-macros.asm for pushing to and
popping from the stack to make those operations semantically
clear in our code.

V. USER INTERFACE

We have implemented an HTTP server, so the functional
interface is through a web socket while the debug interface is
the standard output of the MARS simulator. To compile MARS
with our implemented syscalls, run make from the project
root. Then run java -jar Mars4_5-SockMod.jar or
directly open the JAR to use the modified version of MARS.
Load the mips/main.asm file into the simulator. Assem-
ble and run that to start a server listening on port 19001
(http://localhost:19001/). Now, the content in the
html/ directory is hosted at the root of the server. The content
we created for this project is rendered below as our interface
examples. Alternatively, the server can be accessed using the
Unix tool curl.

VI. DOCUMENTATION OF RUNS

A. Static Page Content

The static page in Fig. 1 is hosted as the /index.html
document of the server. This is the document the user would
expect to load into their browser upon access to the root page
of the server. This demonstrates the ability to serve multiple
resources for a page: images, fonts, and the HTML.

B. Dynamic JavaScript Content

The dynamic page in Fig. 2 is the presentation given to
the class on April 23, 2015. This document uses HTML,
JavaScript, and images. All resources are loaded from YAMS
and not from external internet hosts.

C. Interactive AJAX Content

The final dynamic-content page, shown in Fig. 3, is the front
end interface for the YAMS server’s Brainfuck[3] interpreter.
The page interacts with the interface through POST requests
and updates the text field on the page when it receives the
result of running the user-supplied Brainfuck code and input.

VII. GROUP MEMBER CONTRIBUTIONS

• Stephen Brennan
1) String functions
2) Brainfuck interpreter

• Katherine Cass
1) Static site
2) Report content

• Jeffrey Copeland
1) Socket syscalls
2) HTTP request handling

• Andrew Mason
1) HTTP response building
2) Project presentation

• Thomas Murphy
1) File access
2) Code formatting and style
3) Report organization and typesetting

Aaron Neyer planned to build a website documenting our
project, but could not complete it due to personal circum-
stances.

VIII. CONCLUSION

We started this project to build a simple web server in MIPS.
Despite the high upfront workload, our collective components
merged into what has been called “a surprsingly robust web
server.” Thus, we have achieved our goal: writing a static
webserver in MIPS and MARS.

http://localhost:19001/


CWRU EECS 314 SPRING 2015 FINAL PROJECT 3

APPENDIX A
SCREENSHOTS OF CODE EXECUTION RESULTS

Fig. 1. The static index.html served by YAMS by default.

Fig. 2. The first view of a dynamic HTML/JavaScript page containing the material presented to the class.



CWRU EECS 314 SPRING 2015 FINAL PROJECT 4

Fig. 3. A web interface to an implementation of the Brainfuck interpreter contained within YAMS.



CWRU EECS 314 SPRING 2015 FINAL PROJECT 5

ACKNOWLEDGMENT

The authors would like to thank Cameron Gutman
(https://github.com/cgutman) for providing infor-
mation about the usage of identity transfer encoding.

REFERENCES

[1] P. J. Leach, T. Berners-Lee, J. C. Mogul, L. Masinter, R. T. Fielding, and
J. Gettys. Hypertext transfer protocol – HTTP/1.1. [Online]. Available:
https://tools.ietf.org/html/rfc2616

[2] S. Brennan, K. Cass, J. Copeland, A. Mason, T. Murphy, and
A. Neyer. yams - YAMS: Awesome MIPS server. [Online]. Available:
https://github.com/brenns10/yams

[3] U. Müller, “Brainfuck: An eight-instruction turing-complete programming
language.” [Online]. Available: http://www.muppetlabs.com/∼breadbox/
bf/

[4] “List of HTTP status codes,” page Version ID: 659966084.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=List of
HTTP status codes&oldid=659966084

[5] R. Fielding and J. Reschke. Hypertext transfer protocol (HTTP/1.1):
Semantics and content. [Online]. Available: https://tools.ietf.org/html/
rfc7231

https://github.com/cgutman
https://tools.ietf.org/html/rfc2616
https://github.com/brenns10/yams
http://www.muppetlabs.com/~breadbox/bf/
http://www.muppetlabs.com/~breadbox/bf/
https://en.wikipedia.org/w/index.php?title=List_of_HTTP_status_codes&oldid=659966084
https://en.wikipedia.org/w/index.php?title=List_of_HTTP_status_codes&oldid=659966084
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231

	Problem Statement
	Major Challenges
	System Components
	String Operations
	HTTP Request Handling
	File Access
	Turing Tape Language Interpreter

	Component Integration
	User Interface
	Documentation of Runs
	Static Page Content
	Dynamic JavaScript Content
	Interactive AJAX Content

	Group Member Contributions
	Conclusion
	Appendix A: Screenshots of Code Execution Results
	References

